翻訳と辞書
Words near each other
・ Rice Lake (Barron County, Wisconsin)
・ Rice Lake (CDP), Minnesota
・ Rice Lake (Cook County, Minnesota)
・ Rice Lake (ghost town), Minnesota
・ Rice Lake (Hubbard County, Minnesota)
・ Rice Lake (Mille Lacs County, Minnesota)
・ Rice Lake (Ontario)
・ Rice Lake (Pope County, Minnesota)
・ Rice Lake (Rice County, Minnesota)
・ Rice Lake (town), Wisconsin
・ Ricci Institutes
・ Ricci Luyties
・ Ricci scalars (Newman–Penrose formalism)
・ Ricci soliton
・ Ricci v. DeStefano
Ricci-flat manifold
・ Riccia
・ Riccia atlantica
・ Riccia fluitans
・ Riccia, Molise
・ Ricciaceae
・ Ricciarda Cybo-Malaspina
・ Ricciarda, Marchioness of Saluzzo
・ Ricciardo Amadino
・ Ricciardo e Zoraide
・ Ricciarelli
・ Ricciarelli (disambiguation)
・ Riccioli (crater)
・ Riccione
・ Ricciotti Garibaldi


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ricci-flat manifold : ウィキペディア英語版
Ricci-flat manifold
In mathematics, Ricci-flat manifolds〔Dictionary of Distances By Michel-Marie Deza, Elena Deza. Elsevier, Nov 16, 2006. Pg 87〕〔Arthur E. Fischer and Joseph A. Wolf, (The structure of compact Ricci-flat Riemannian manifolds ). J. Differential Geom. Volume 10, Number 2 (1975), 277-288.〕 are Riemannian manifolds whose Ricci curvature vanishes. In physics, they represent vacuum solutions to the analogues of Einstein's equations for Riemannian manifolds of any dimension, with vanishing cosmological constant. Ricci-flat manifolds are special cases of Einstein manifolds, where the cosmological constant need not vanish.
Since Ricci curvature measures the amount by which the volume of a small geodesic ball deviates from the volume of a ball in Euclidean space, small geodesic balls will have no volume deviation, but their "shape" may vary from the shape of the standard ball in Euclidean space. For example, in a Ricci-flat manifold, a circle in Euclidean space may be deformed into an ellipse with equal area. This is due to Weyl curvature.
Ricci-flat manifolds often have restricted holonomy groups. Important cases include Calabi–Yau manifolds and hyperkähler manifolds.
==Further reading==

* Matthew Randall, ''Almost Projectively Ricci-flat Manifolds'', Dept. of Mathematics, University of Auckland, 2010.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ricci-flat manifold」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.